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I. Introduction

In most physical phenomena, changes in spatial or temporal structure occur over
a wide range of scales. Images are no exception: changes in light intensity reflect
the many spatial scales at which visible surfaces are organized. It seems intuitive
that a great deal of information can be gained by an analysis of the changes in
a signal at different scales. For instance, graphs of one-dimensional functions are
a very effective tool for describing complex systems. An important reason is that
they allow direct visual access to important properties of the data, chiefly to their
changes over different scales.

The idea of scale is critical for a symbolic description of the significant changes
in images or other types of signals. Changes must be detected at different levels
of detail and over different extents. In genera! different physical processes may
be associated with a characteristic behaviour across different scales. In an image,
changes of intensity take place at many spatial scales depending on their physical
origin. A multiscale analysis, tracing the behaviour of some feature of the signal
across scales, can reveal precious information about the nature of the underlying
physical process. In images, for instance, spatial coincidence at all scales of zero-
crossings in the Laplacian of the intensity values filtered with a gaussian mask,
signals a physical "edge", distinct from surface markings or shadows. Not only
is it necessary to detect and describe changes in a signal at different scales, but
in addition, much useful information can be obtained by combining descriptions
across scales.
The importance of this idea has been clearly realized in the field of vision. One
of the main contributions of visual psychophysics in the last 10 years was indeed
to show that visual information is processed in parallel by a number (perhaps a
continuum) of spatial-frequency-tuned channels (Campbell & Robson, 1968). The
bulk of the data demonstrates that the visual system analyses the image at different
resolutions. Physiological experiments aie consistent with the psychophysics. They
suggest that in the visual pathway spatial filters of different size operate at the same
location. Furthermore, psychophysics, physiology and anatomy all show that the
spatial grain of analysis continuously changes from foveal to peripheral locations.
Receptive and dendritic field sizes of both retinal and cortical neurons increases
monotonically with eccentricity, in agreement with the dependency on eccentricity
of the psychophysical channels.

In the field of computer vision, Rosenfeld was one of the first to propose explicitly
an edge detection scheme-based on multiscale analysis performed with filters of
different sizes (Roscnfcld and Thurston, 1971). A similar algorithm was suggested
by Marr (1976) though with dilferent goals and motivations. More recently, he
has strongly advocated the use of derivatives of gaussian-shaped filters of different
sizes with the goal of detecting changes in intensity at different scales (Marr, 1982).

A '[he idea was first proposed in the context of a theory of stereomatching (Marr
- . and Poggio, 1979). In that scheme. analysis at the difnrent scales was effectively

kept separate. Later, Marr and I lildreth (1980) proposed some heuristical rules to



combine information from the different channels. However, the important problem

of how to combine effectively the different scales of analysis at thisn early level has
remained open , although recent work by D. Terzopoulos (1982) has successfully
applied multi-level algorithms to the problem of reconstructing visual surfaces (see
also the work by Richards et al., 1982 and by Canny, 1983 on edge detection). In
a recent conference (Cold Spring Harbour, April 1983) we learned from A. Witkin
a new way of describing zero-crossings across scale.'

A 1-dimensional signal is smoothed by convolution with a small (large) gaussian
filter and the zeros of the second derivative are localized and followed as the
size of the filter increases (decreases). This procedure originates a plot of the
zero contours in the x - or plane (where a measures the size of the gaussian
filter).2 In this way, Witkin was able to classify and label zero-crossings achieving
an effective description of a signal for purposes of recognition and registration.
This is possible mainly because the geometry of the zero contours is surprisingly
simple. Zero-contours are either lines from small to very large scale or closed,
bowl-like shapes. Zero-crossings are never created as the scale increases. Witkin
mentioned the striking result (obtained by J. Babaud) that the gaussian filter is
the only filter with this remarkable property in 1-D (at the same conference J.
Koenderink told us that he has obtained similar results exploiting properties of
the diffusion equation). 3

We have now succeded in obtaining a proof of this result in 2D (and in fact
any number of dimensions). We have also obtained related results for zero- and
level-crossings of other differential operators, in particular for ridges and ravines
in the image intensity.

The 2-D result seems important because it:
(a) lays the necessary mathematical foundation for using multiresolution labels for
classifying zero-crossings for a symbolic description of intensity changes.

(b) justifies the use of gaussian filters and an associated linear derivative because
of their "nice" properties under changes in scale.

In this paper, we will first state and prove the one-dimensional result. We will then
show that only a specific 2-D extension is valid. Zero-crossing of linear derivatives
have the "nice scaling behaviour" if and only if the image is filtered by a 2-D
rotationally symmetric gatissian. In particular, the laplacian-of- a-gaussian filter
suggested by Marr and Hildrcth has nice scaling behaviour. The second directional
derivative along the gradient, however, does not: no filter exists that can ensure a
nice scaling behaviour of the zeros of this derivative. We have then, the following
results:

Witkin's pritc-winning paper will appear in the 1983 iJCAI Proceedings (Witkin. 1983). We
received a prcprint after this memo went to press.
2J. Stansfield first described - for analysing commodities trends (Stansfield, 1980) - the idea of

plotting zero-crossings over scale, but did not develop it.
•3After completion of this memo we were infomied that a technical report containing the I) proof
is now ready, with the title "Uniqueness of the gaussian kernel for scalc-spacc filtering," by J.
iabaud, A. Witkin and R. )uda, Fairchild TR 645, Flair 22).
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(a) for linear derivative operations-in particular, fbr the laplaian-the gaussian
is the only filter with a nice scaling behaviour.
(b) for the nonlinear directional derivative, no filter will give nice scaling behaviour.

2. Assumptions and results

We will consider filtering the image I with a suitable filter F and then consider
the behaviour of the zero crossings as we change the scale of the filter. We make
five assumptions about the filter, and impose them as boundary conditions.
(1) Filtering is shift-invariant and, hence, a convolution. We write this as

F I( ) f F(C - _)C)d .

(2) The filter h'as no preferred scale length. In two dimensions standard results
of dimensional analysis (Bridgman, 1922) give F(z, o) f where o is the
scale of the filter. The factor ; ensures that the filter is properly normalized at
all scales.
(3) The filter recovers the whole image at sufficiently small scales. This is expressed
by Limo.-,, F(, a) = 6(;K), where 6(x) denotes the Dirac delta function.
(4) The position of the centre of the filter is independent of o. Otherwise, zero
crossings of a step edge would change their position with change of scale.
(5) The filter goes to zero as jx_ " oo and as o 1-+ 00.
As will become apparent, our results are independent of scaling the x axis. We
usually require that we scale this axis so that the filter is radially symmetric, and
state theorems with respect to such axes. However, we can relax this requirement
by rescaling the axes.
Figure (1) shows the typical scaling behaviour of zero crossings in one dimension
observed by Witkin. Figure (2) shows possible behaviour of zero crossings which
is never empirically observed when the filter is a Gaussian. The generic properties
of the zero-crossings curves in the x, a plane can be derived from the Implicit
Function Theorem. To yield a Cr curve the theorem requires that the Laplacian of
the filtered image is Cr. Therefore the filter must be reasonably smooth. Observe
that filtering with a gaussian will ensure a C' output for all images, because of
the cquivalence with the Cauchy problem for the diffusion equation. The Implicit
Funciion Theorem may break down at degenerate critical points when all first
derivatives of the filtcrcd image vanish together with the Hessian.4 These points
arc non-generic in the sense that a small perturbation will destroy them. Observe
that "true" zero-crossings can only disappear in pairs in the x, o plane. Only trivial
zeros that do not cross zero can disappear by themselves. They are, however, non
generic.
In one-dimension, the zero crossings obey

Zeros of the Hessian correspond to zeros of the gaussian curvature.
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Figure 1 See text.

Figure 2 See textx



0 -- f"( I(¢)dk (2.1)

This equation gives x as an implicit function of o, i.e., x- x(a). If we vary x and
o so that (2.1) is still satisfied, we obtain

d f_ f l( )I( )d (2.2)

So the tangent to the curve is uniquely defined at a point, as are all the higher
order derivatives. This prevents the behaviour shown in Figures 2b, 2c with the
possible exception of the nongeneric cases, when the Implicit Function Theorem
breaks down.

The curve in Figure 2(a) is more interesting because it corresponds to a pair
of zero crossings being "created" as the scale increases. The Implicit Function
Theorem does not rule out this case. It therefore seems natural to require a filter
such that this never occurs. In the following three sections, we will prove some
theorems showing that such a filter can only be a gaussian and, moreover, that not
all differential zero-crossings operators can obey this property. More precisely, we
prove:

Theorem I. In one-dimension, with the second derivative, the gaussian is the only
filter-obeying our five boundary conditions-which never creates zero crossings
as the scale increases.

Theorem 2 In two-dimensions, with the laplacian operator, the gaussian is the
only filter obeying the boundary conditions which never create zero crossings as
the scale increases.

Thcoremn 3. In two-dimensions, with the directional derivative along the gradient,
there is no filter obeying the boundary conditions which never creates zero crossing
as the scale increases.

In section (5), we show that results similar to Theorems I and 2 can be extended to
all linear differential operators (in particular, directional derivatives) and therefore
to other features of the image, such as ravines and ridges (but not peaks) in the
image intensity. These theorems can be extended to any dimension, but we will
not give these extensions here.

It should be emphasized that, although zero crossings can only annihilate themselves
in pairs, the intensity change corresponding to a zero crossing could become
arbitrarily smaller as sigma increases. The zero crossing would then become so
weak that for practical purposes the curve may terminate.

3. The I-D case

Let the image be I and the filter be F. We consider the zero crossings in the
filtered image.

". " -, . ., t -. • •• . -5



F, I(x) f F(x - )I( )d (3.1)

Denote d(F I) by E. Hence the zero crossings are the solutions of

E(x) = 0. (3.2)

These form curves in the x - a plane. The condition that zero crossings are not
created at larger scales is that for all such curves a(x) the extrema of a(x) are not
minima. Hence, for all points x. such that a'(x,) = 0, we require that a'(xo) < 0.

Let t be a parameter along a curve in a - x space. Then

dE _E dx aE da

dta d -- x dt + d--- (3.3)

On a curve of zero crossings, E = 0, and so - 0 on such a curve. We can
choose the parameter t to be x. Then, using the Implicit Function Theorem, we
obtain:

do" -E,d-- -Ea (3.4)

This result vanishes at xo, if and only if

Ezxo) - 0, (3.5)

and we calculate
%."" d2 Co -Exxxo)

d~~0  _-E- ( 0  (3.6)
dx 2  E,(xo)

Thus, our filter must be such that if

Eeo) E.(x0 ) = 0 (3.7)

then

Eo~(x) 0. (3.8)

Ea(x 0)

The Diffusion Equation can be written as

a2E 1lE (3.9)
ajX-2 ==- '*(39
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Note that by the substitution t we obtain the standard diffusion equation.

If the filter F is a gaussian,

F (x) = 1ex-x
S- X2(3.10)

then it will obey the diffusion equation of which it is the Green function and
hence E(x) will also obey the equation. Thus, -& = and so a gaussian filter
will always satify conditions (3.7) and (3.8).

We now show that the gaussian is the only filter which satisfies the conditions and
obeys the boundary conditions specified in section (1).

Consider an image which is the sum of delta functions:

n

)=1A6(* - 0) (3.11)

It is possible to generate any image in this way by taking the limit as n i-4 oo.
Set

T(x) = F,(x). (3.12)

*Equations (3.7) and (3.8) yield

n

_AT(x, - ) 0 (3.13)

n

ATX(Xo - ,) = 0 (3.14)

and

j=1 A&Txx(xo - ,,)
. Ai7%(xo - >0. (3.15)

We can construct a counter example if we can solve the simultaneous equations
for any xo, n and any positive t2:

n

AJ(xo - ) O. (3.16)

, A1 Tx(xo - ) 0. (3.17)

t7



SA4Tx(x - i) -1' .  (3.18)

n
" A, T(x, -- = 1. (3.19)

We can write these as a matrix equation:( T(x - 1 ) ... T(x - n) Al 0

Tx(xo - ... Tx(zo - / (3.20)

STT(xo -l T(xo - n) An)

Using Appendix (1) a necessary and sufficient condition for it to be impossible
to solve these equations for any values of xo,, -.. , is that there exists a vector
X -- (X1, X2, X3, X4) independent of z such that

X1T(x) + X2T(x) + X3Tzx(x) + X4To(x) = 0 (3.21)

and

-,3 2  X 4  0 (3.22)

Equation (3.22) will be satisfied for all positive e2 if and only if

X3X4 < 0 (3.23)

Our boundary condition (2) means that F(x), and hence T(x), cannot depend on
amy scale length. The X's are independent of x and so to make (3.21) dimensionally
correct (Bridgman, 1922) we set

a b -d---- X 2  or X3 =C, X 4  - (3.21)

and rewrite it as

aT bT, d
2 + - +-cT= -T (3.25)

Condition (3.23) implies that d is positive.

Now T ' so F will also satisfy (3.25) although it is possible to add a term 0

to F where 1 0O. However, this term will not satisfy the boundary condition
(5) as x i-, oc and so we discard it.

8



17 --- 7

1Tus, we have shown that we can always construct a counter example unless our
filter F obeys to the equation

aF b d
a + -F. +cF. = F, (3.26)

with 4 positive. It is shown in Appendix (2) that the only solution of this equation
obeying the boundary conditions is the gaussian. Hence we obtain Theorem (1).

4. The 2-D Case

We now consider the two-dimensional case when the zero crossing op tor is the
laplacian V2 and the image depends on x = (x, y). Again, we consider ., filtered
image

F * I(X) "-Jj" F( - (r)df (4.1)

We set

E(x) = V2{F • I(X)} (4.2)

The zero crossings are solutions of E() = 0 and form surfaces in the three-
dimensional (:,a) space. Our requirements that zero crossings are not created at
larger scales is satisfied if the extrema of these zero crossing surfaces are either
maxima or saddle points. Minima are forbidden. Thus, if we have a surface a(x, y)
and there is a point (zo, yo) with

0'Z(z 0, Yo) = ,(X0, Yo) = 0 (4.3)

we cannot have ax, - 0 and both

ffXX > 0) avy > 0. (4.4)

Let t be a parameter of a curve of the surface E(x) 0. Then,

dE_ E dx odE dy _ GE dadE ad +~ +-- (4.5)
dt az dt +~ jdt 5w dt

Since we are on the zero crossing surface, we have d = 0 and setting t - x and
then t y, we obtain

9(4.6)

9



F-E

- (4 .7 )

Suppose we are at an extremum (xo, yo). Choose the x and y axes so that they
coincide with the directions of principal curvature at (x,, yo). Then we calculate

-y) Ez~z(xoYo) (4.8) ..
(') E0 (z0 , yo) -,

-EY( 0 , YO)

It should be emphasized that (4.8) and (4.9) re true only at an extremum of
a(z, y) and only if the x and y axes are taken along the directions of the lines of
curvature (this ensures aoy = 0).

As in the I-D case, it follows that the conditions (3) and (4) will always be satisfied
if E obeys the Diffusion Equation. Since if ax,(xo, yo) and uy(zo, yo) are both
positive, (4.8) and (4.9) imply that and are both negative. Thus,

E , Eo zoY
a gaussian filter will always obey our condition.
We now show that if the filter is not a gaussian, we can construct a counter-example.
The argument is a generalization of the proof of Theorem 1. Let

nI~_) Ajb( - --)(4.10)
1=1

Set

T(K) = V 2 F(x) (4.11)

We can construct a counter-example if we can solve the matrix equation for any
x , ..., , and tny positive e and 12:

-x, i)- ... -)T(x0 -) (0\
T'(X0 - ~) ... TX,(z 0 - ) _101(.)

-Y(') - ... T(,- (n) 0 (4.12)

T y ( O- .. T 0 (x o 2

Using Appendix (1), a necessary and sufficient condition for no solution to exist
for all xo, g ,..., , is that we can find X = (X,,. .. , X5) such that

X(X) + X2 ''(r) + X:iT y(r) - X4 r',,tX) 4 X5''Y I-X;'- (x-) 0 (4.13)

10



J

and

- eX 5 + X6  0 (4.14)

Equation (4.14) can be satisfied for all positive 1 and 2 if and only if:

X4X>5 > 0, X4X6 < 0. (4.15)

Again, boundary condition (2) implies the X's are of form

a b-d
PX2 b 3 bP >4 C1,s X5 C2, X6 (4.16)

and T satisfies

aT bi b d
-a + -T + - Ty + c I TZ -C2 TyV d T (4.17)

with c IC2 > 0 and c1d> 0.

F will satisfy (4.17) up to a term with V2tk 0, which we can discard because
of boundary condition (5).

It is shown in Appendix (2) that the only solution of (4.17) which obeys our
S conditions is the product of two one-dimensional gaussians. If we make the

additional assumption of symmetry, we obtain a two-dimensional symmetric
gaussian. Hence, the gaussian is the only filter which satisfied our condition,
and we have proven Theorem 2. There is an additional property of gaussian
filters: allowed zero-crossing surfaces in the z, y, a space cannot have saddle points
with positive mean curvature H. The result of this section forbids the existence of
upside-down mountains (in the x, y, a plane) and also of upside-down volcanos.
Sections of the zero-crossings surfaces normal to the x, y plane may appear as
suggesting that lines of zcro-crossings are created. In fact, because of saddle points
of the surface, zeros can be traced confinuously along the zero-crossing surface to
smaller and smaller scales.

5. Further results

It is clear that the methods of proof we have developed do not only apply to zero
crossings. For example, consider the one-dimensional case and look for solutions

of

d-( *) =0 (51
dx

These correspond to maxima and minima of the filtered signal which we call peaks

and troughs. If we set E =-(F I) and duplicate the arguments of section (2),

11



we find that having a gaussian filter is a necessary and sufficient condition for
peaks and troughs not to be created.

More generally, if L(x) is a differential operator in any dimension that commutes
with the diffusion equation, then solutions of

L(F * I) - const (5.2)

will not be created if and only if the filter is gaussian. Zeros of all linear differential
operators can be encompassed by Theorem 1.

In particular, in two dimensions, surfaces obeying t(F T) = 0 can only be
created by a non-gaussian filter. Thus, ridges and ravines whose creation necessarily
involves creation of zeros along some direction, can only be created, as the scale
increases, by a non-gaussian filter. The argument, however, does not apply to
extremum points (non degenerate critical points, such as peaks and pits, where all
derivatives vanish simultaneously).

6. Directional operator

We have considered the two-dimensional case when our operator is the second
directional derivative along the direction of the gradient in the filtered image. Let

H(x) 1 1 F(z - _.I _.(6.1)

The directional operator is

d -- I aH a (6.2)
dt SH I xj ax3

using the summation convention on the j indices. The second directional derivative
along the gradient is then

dIH II, H Hi(
-dt2  HkHk

where Hi = = Hij and we use the summation convention. We set

E(,) = ) _ (6.4)

The zero crossings lie on the surface a(x, y), where E(;) = 0. Our condition is
that if we have a point (x,, yo) where

ax(-o, Yo) = a(xo, yo) 0 0 (6.5)

12



and the x and y axes are along the direction of the lines of curvature of the a(x, y)
surface at that point, then it is impossible for both a, and o to be negative, i.e.,

w.T(Xo, YO) < 0, Owyy(Xo, Yo) < 0 (6.6)

We use the Implicit Function Theorem to obtain

ax- Ex (6.7)

-E,

a= (6.8)

and we calculate

,, o y) _ -Ex,(xo, yo)
oz((xO, YOy) (6.9)

-Ea(o, y1)

Oi, --EY(O),y (6.10).. ': "( °v°)=EoCxo, yo)

Again, note that if E obeys the Diffusion Equation, then the conditions (6.5) and
(6.6) cannot be satisfied. However, E is no longer a linear function of the filter,
and so we cannot directly obtain a condition the filter must satisfy. Now set

n

I(x)= b A(x - ja) (6.11)

we find

1IjH1 Hi = AaApA 7yFi(a)F(f3)Fij('y) (6.12)

where the summation convention applies to a,3, as well as to i,j.
We define

T(afly) = {Fi(a)Fj(#)Fij(-) + Fi(#)Fj(a)Fj(-y)

+ F ,(,)F,(-y)Fjj(f) + F,(/)F,(y)Fi,(a) (6.13)

+ F,(-y)Fj(a)F(/#) + F("y)Fj(3)F 1(a)}

and write (6.12) as

H, IH = 7'(af-')AaAAy (6.14)

13



We can produce a counter-example if we can satisfy

T(c43'y) .. 0

T,(aIlY) ... 0
T, (') o= (6.15)

TXZ(a"lY) ... -1t1
TXY(a#) ...
To(aIY) ...

It follows from Appendix (2) that no solution exists if there is a X - (X1, X2, X3, X4 , X5, X6)
such that

*XT(cfl3y) + X2 Tx(c43'y) + X3Ty(af) + X4T.(4ii1)
+ XsT~y(aO3Y) + X6To(&IlY) 0

(6.16)

but

_ - x5 + x6  0. (6.17)

As in section (3), we can use dimensional arguments to show this means that

T(ao-,) satisfies the generalized Diffusion Equation.

However, since we require solutions to (6.15) of specific form AcA#A. it is possible
that there are no solutions of (6.15) even if T(afl-1) does not obey the generalized
Diffusion Equation. To rule this out, we must show that it is possible to find a
solution of form A.A,A . From Appendix (2) it is possible to get a solution B,,.,
of

(0'

*01(2 * i (6.18)
* -41

if and only if the vector

-t2

lies in the spaced spanned by the

14



as C1, ,-y vary. Denote

(0\
0
0
--t--t2

by 1i and

by T, 7 , where i 1 to 6.

Each TP(afl-t) is symmetric in all indices a, and -y and so there are N =
! _!N such vectors. They have only six components each and so they are not
linearly independent. There will be at least N - 6 linearly independent vectors
(p)k: such that

T(') () =0, p 1 to N -6. (6.19)
ajP7

If T(o7.,) does not obey the generalized Diffusion Equation there will be at least
one solution Bfiy to (6.18). The general solution is of form

N-6
Bc~ ~ppctp (6.20)

p=I

where u is arbitrary.
We now ask under what conditions can we find A. and u which satisfy

N-6
Bapy - P -" A"ApAy (6.21)

P= 1
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From the form of (6.15) it is clear that scaling the A's will not affect the counter-
example. Hence, satisfying (6.21) is equivalent to finding an A,, such that AaA.,,
lies in the N-5 dimensional vector space spanned by B,, (I ., .N-6 A
necessary and sufficient condition is that A,,ApA., is perpendicular to the five
vectors which span the complement of this N-5 dimensional space in the full N
dimensional space.

Let the five vectors be Pa-,, Qa-, Tap,, Xapy and Y..,. It will be possible to
solve (6.21) and hence (6.15) if we can satisfy

P,,pyAaAAy = 0

Qp 7AaAjA7 = 0
T,#-,Aa A -Ay = 0. (6.22)

X,#,AcApAy = 0
YapTAaApjAy = 0.

These are a system of five simultaneous cubic equations in n variables. If we take
n sufficiently large, it will always be possible to solve them (Yuille, in preparation).

Thus, unless T(a-y) obeys the generalized Diffusion Equation, it will always be

possible to construct a counter-example.

We now show that no reasonable filter will satisfy these requirements.

First suppose we have a gaussian filter G(_, a)

G(x,o) = e }_ (6.23)

where m is an arbitrary number.

Then we find

,)= - exp{ ( (6.24)

GAa)m+ 20{ m

Sj2c } + e-p-{ 2 '} (6.25)

So we obtain

16



T(al)--2 x) 2  (x---) 2  (x----) 220 2o2 20 }1(
X ,g--+-j {(_ - . - - (_ ) - )- (- ).( -

+;K - _ 2 j - ()(x _ )2(x _ ).( - )+- -•( -')+ 02 
0

(6.26)

As shown in Appendix (2), the general Diffusion Equation can be written

-, + t2 TV + c I T,, + c2 T -d (6.27)
a' 0 01

If we substitute (6.26) into (6.27) we see that ciT,, + C2Tys contains a term
jC1 + C2) ' £)2 ( fl_ j7)2

Z - 2;P-j-ezp{ - ( 2 - )} (6.28)
6e 020,2 20

All other terms in (6.27) will be of this form multiplied by powers of (;- ),(z-
i. and (x -£ ). From (6.17), c1 and c2 have the same sign and so it is impossible
for Z to be zero and, hence, (6.27) cannot be satisfied if the filter is a gaussian.

Now suppose we have a filter which satisfies this requirement. Set y=
and integrate T(afl-,) with respect to £, and . We find

J JF,(j - )F,(x - O ( + + ))dfd = F • F Fj(3x) (6.29)

Hence, with a, + j . we have

J JT(at-y)d.dc , - F* F, * F,(3z) (6.30)

This will still satisfy the generalized Diffusion Equation since T(ao-7) obeys this
equation for all values of and € . From Appendix (2), the solution to the
generalizcd Diffusion Equation is P * (x), where f is an arbitrary function and

SP(z)p{ (z + bo) d }exp{( - b2 )2 d-} (6.31).. .. -) 22 C1 22 C2

We have
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. ., . - . ,- . . : . . . . . . . , ... . .; . . .. . .

F* Fy, Fj(3x) = P, f(j) (6.32)

The boundary condition (4) means that b = = 0 and we can scale the x and
y axes to make P a gaussian. Thus

Fj F, F 3 _(3.) -Gf(_) (6.33)

We Fourier transform this equation denoting the fourier transform of a function
g(_) by Tg(g).

s(W_)7Fj(j_)7 Fj(W) = TG(3w)Tf(3wz) (6.34)

* But we have

TFi(w) = -iwiTF(w) (6.35)

and

w2
TG(3w) exp{ 2o.2-} (6.36)

Hence,

(W)3 -9w 2

= exp( T }Tf(3w) (6.37)

and

Tf(3w) -3 2  (6.38)

W4 202

Ilus F is the convolution of a function with a gaussian and obeys the Diffusion

Equation. But, as shown in Appendix 2, the only such filter which satisfies the
boundary conditions is a gaussian.

So a filter which obeys the conditions (6.16) and (6.17) must be a gaussian, and yet
a gaussian cannot satisfy these conditions. Therefore, for this directional operator,
it is impossible to satisfy our requirement. Notice that if tile gradient direction
does not chan.c rapidly the second directional derivative along the gradient can be
approximated by the second derivative along the x axis, where the r axis is chosen
in the direction of the gradient. The arguments of section 5 then show that no
Mcro-crossings arc created if, and only if, the filter is gatissian. If" these asstimptions

-are satisfc(i -t one scale, they may break down at larger scales because of the
influence of' other parts of' the image. We therefore expect that at large scales
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zero-crossings may be created even for gaussian filters, unless the image is very

simple (for instance an isolated straight step-edge).

7. Conclusions

The behavior of the zero- (or level-) crossings is more complex in two dimensions
than in one dimension. In the 2-D case, two zero crossing contours can merge
into one closed contour as the scale increases. The zero-crossing surface has
a one-dimensional crossection (for given y, say) that corresponds to an allowed
one-dimensional case. In 2-D, however, the "complementary" situation can also
occur: a closed zero-crossing contour can split into two as the scale increases, just
as the trunk of a tree may split into two branches. This occurs at saddle points
of the zero-crossing surface. This case would correspond in 1-D to the "creation"
of a zero-crossing (imagine a one-dimensional section of the zero-crossing surface)
which is forbidden. In 2-D, however, no new zero crossing is created, since the
corresponding surface is continuous down to zero scale. We have constructed
two-dimensional examples of both these two cases, using the gaussian filters. Both
examples would also work for all other filters.

Several other functions have been proposed for filtering images. We expect that
they only give a nice scaling behavior for values of a for which they approximate
the solution of the diffusion equation. The DOG (difference of gaussians) does not
satisfy the diffusion equation, but is a good approximation except when o is very
small. One-dimensional real Gabor functions (the product of a gaussian and a
sine or a cosine) approximate the solution of the diffusion equation only for large
values of o. Our conditions are violated even more by the sinc function which
only satisfies the diffusion equation at best in a weak asymptotic sense. Figure
3 shows an example of the zero-crossings generated by the gaussian and the sine
filter.

It is interesting that our proof implies that the difference equation is the only
linear equation that has, with suitable boundary conditions, a nice scaling behavior
of its solutions. This may have some implications in physics.

In summary, we have shown that the gaussian is the only filter that guarantees a
nice scaling behavior of the zero- and level-crossings of linear differential operators.
Notice that the gaussian need not be symmetric: elongated directional filters,
obtained by stretching the axes, also have a nice scaling behaviour. We are
presently studying the practical use of the scaling diagrams (in 2-D) for a symbolic
repre.ntation of images, as suggested by Witkin, and, in particular, for solving the
correspondance problem in stereo. In this context, the robustness of the "scaling
representation" under small perturbations of the image is clearly critical and has
to be carefully studied.
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* Figure 3 Examples of the zero-crossings of the second derivative of the gaussian
(a) and of the sinc filter (b) for the same input function
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Appendix I

If we have a matrix equation

Bx = a (1)

the necessary and sufficient condition for a solution is that

(bl, ... bin bu, ... bin a,
ranki . .. rank . ... (2)

,bmi bm ] kbm ... bmn am)

Hence a necessary and sufficient condition for the non-existence of a solution is
that we can find a vector __ (X,..., Xm), such that

XI(bii,...,bin) +... + Xm(bmi,...,bmnn) 0 (3)

but that

Xji + .. + Xnam 3 0. (4)

Appendix 2 k

Suppose we have a generalized Diffusion Equation of form
F + bF "+ cFxz= dF1

We can remove the first term by the scaling F , .- (a/d)F. Consider the remaining
terms

bF+ cFz- dFO (2)

We write

F(z, u) = / f/(w, u)e-'iwdw (3)

where f (w, o) is the Fourier transform of F(z, o,) with respect to x. Combining
(3) and (2) we obtain

b(-iw) f ()f d~f (4)
f + o
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We integrate and get
• - j, __¢ 2

f(w, ) = g(w){e e"  r } (5)

where g(w) is a function of integration independent of o.

Hence, substituting (5) into (3) gives us

F(x, a) = 1 fg(w){e-"e=,}eiwzdw (6)

Note that we are considering equations for which c/d is positive and so the integral
is well defined. We now apply the convolution theorem to (6) and get

F(z, ,) 1 f X(x - ', a)i(c')d" (7)

where u( ) is the fourier transform of g(w) and X(z, a) is the fourier transform of
{e e-- }. We calculate

(x,o)= - e (8)
Cor

Thus the general solution to (1) is of form

F(, o) or1(I X)vff I 2 (9)4_7 C9

We now impose the boundary conditions stated in section (1). First, note that
X(x, a) is a gaussian with centre z = -ba. The requirement that the centre of the
filter does not move implies that b = 0.

Write

F'(x, a)  a I f e (10)

and consider the limit as a tends to 0. Now,

, = 6(x- ) (it)

where 6 denotes the Dirac delta function. If ( ) is non-7ero the limits c " F(z, a,)

will eithei be undefined or zero. Hence our boundary condition (3) fI-'et 7 0.
More~cr, substituting into (10) we obtain

22
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Lim,,oF(x, a)= p(x) (12)

and condition (3) means that u(z) must be the delta function. Hence, on
substituting this back into (10) the only solutions of (1) which satisfies our boundary
condition is the gaussian

4&2
__c (13)

This analysis can be extended to the two dimensional generalized Diffusion
Equation

aF +b 1Fz + 2  d
. + cIFz + C2 Fy =-Fa (14)

A similar argument shows that the only solution obeying the boundary condition
in a two-dimensional space is

G(z,y,o) C 2 02kC e02 (15)

We use the symmetry requirement of section (1) to set ci = c2. Then we obtain
1 d I +i! )

G(x,y,o) = (16)2r c a

We can scale the a-axis by V/§ and write (13) and (16) as

--- -eS-  (17)

and

) 1 C (18)
2wr 02

respectively. This ensures that a is the standard deviation of the function.
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